
Solar Tracking Structure Design Engineering Analysis

Hashem Bukhamsin, Angelo Edge, Roger Guiel, Dan Verne

November 20, 2013

Overview

- ▶ Introduction
- ► Solar Panel Specifications
- ► Maximum Loadings:
 - 。 Wind and Snow
- ▶ "Rotisserie" Design
 - 。 Max Stress Analysis
 - Cost and Power Analysis
 - 。 Bill of Materials
- ▶ "Modified TIE Fighter" Design
 - Max Stress Analysis
 - Cost Analysis
- ► Competition Update
- ▶ Updated Team Schedule
- ▶ Recap

Introduction

- ▶ "Dual axis tracking provides a 35-40% increase in efficiency to static and a 3-8% increase from single axis."
- ▶ Solar Panel Specifications

Model KC130TM

56.1 X 25.7 X 2.3 inches

130 Watt Max Power Output

▶ Sponsor

Dr. Tom Acker

Snow Weight

Assuming panel parallel to ground for maximum stress

Maximum Estimated Snow Load: 6in. compact snow & 30in. fresh snow.

Maximum Snow Load Height: 36in.

Estimated Volume of the Snow Load: 36in.x56in.x25in.

56.1in x 25.7in = 1441.77in²

Total weight of snow = **198lbs**

Wind Load

Assuming panel perpendicular to ground for maximum stress.

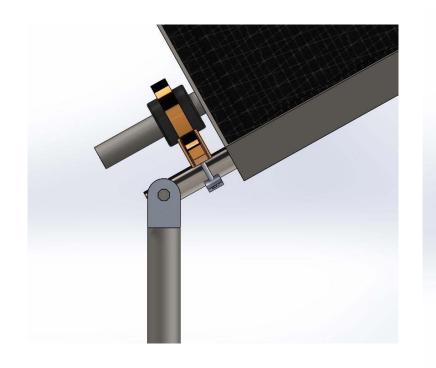
Force=Area*Drag Coefficient*0.00256*Wind Velocity²

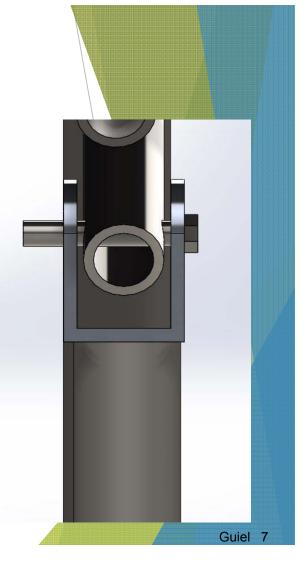
Drag Coefficient = 2

Area= 1400 in²

Wind Velocity = 65 mph

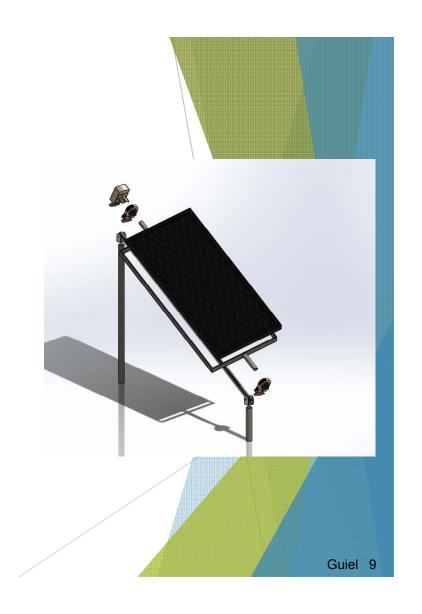
Total Wind Load = 210 lbs


Design 1- The Rotisserie


- ► Single axis tracker with room for an additional axis.
- ► Super efficient due to the solar panel being directly on the axis of rotation.
- ► Simple design and cheap to build.

Rotisserie Key Stress Areas

- ▶ Hinge Bolt
- ▶ Support Bar
- ► Frame (Due to its small thickness)
- ▶ Frame Weld



Rotisserie Static Stress Analysis

		Yield Stress	Maximum	
Stresses	Material	(Ksi)	Stress (Ksi)	FOS
Hinge Bolt (0.5")	Steel	70	5.03	7.0
Support Bar (1.5")	AISI1020	60	5.2	11.4
Frame (1/8"				
thick)	AISI1020	60	30.6	4.0
Frame				
Connection	Weld	50	17.5	2.9

Rotisserie- Cost and Parts List

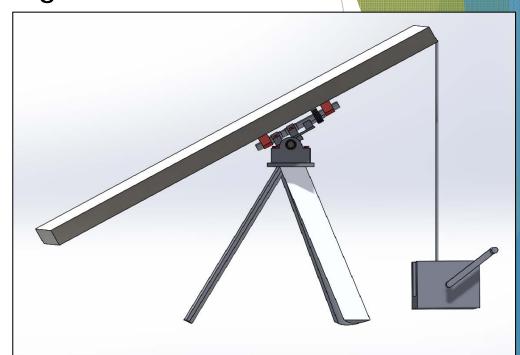
Cost Analysis	Units	Comment	Cost/unit	Cost
Motor	1	Antennacraft TDP-2	\$62.99	\$62.99
Bearing	2	TB-105 Support	\$35.95	\$71.90
Axle Bolt	2	0.5" x 4"	\$2	\$4.00
1.5" Pipe Flange	2	Home Depot	\$2	\$4.00
2" Pipe Flange	2	Home Depot	\$2	\$4.00
Flange Bolt	16	Home Depot	\$0.75	\$12.00
Pipe Hinge	2	Still Shopping	\$10	\$20.00
2" Base Pipe	1	8 ft, cut down	\$35	\$35.00
1.5" Support pipe	1	7 ft	\$35	\$35.00
1/8" x 2.5" Flat bar	1	13 ft at \$9/72"	\$19.50	\$19.50
			Total	\$268.39

Rotisserie-Power

Motor Provides 8 ft*lbs of torque using 65 Watt

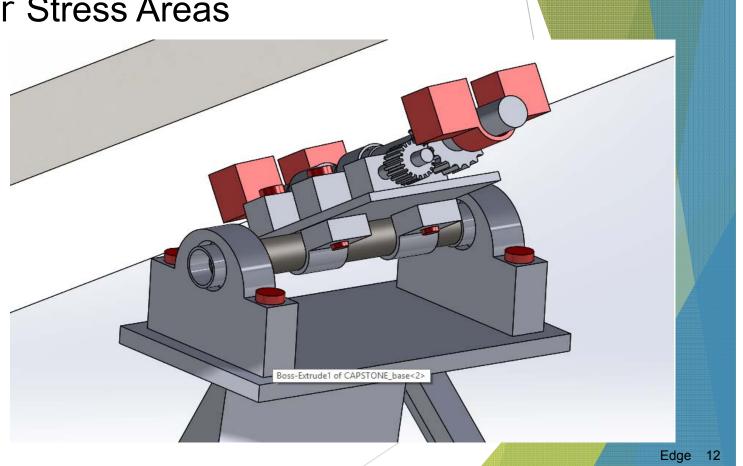
 $T = (\alpha)^*I$

 $I = (1/12)m*width^2 = .3324 slug* ft^2$


Provides an angular acceleration of 24.07 rad/s^2

"Much more than needed, but motor rotates at 5.14 (deg)/s."

Running the motor in 5(deg) intervals, about 1 second, at 65 Watt 360(deg)/5.14(deg)/s = 70 s per day = 7.1 hrs/year At 65 Watts, gives **0.4615 kWh/year**

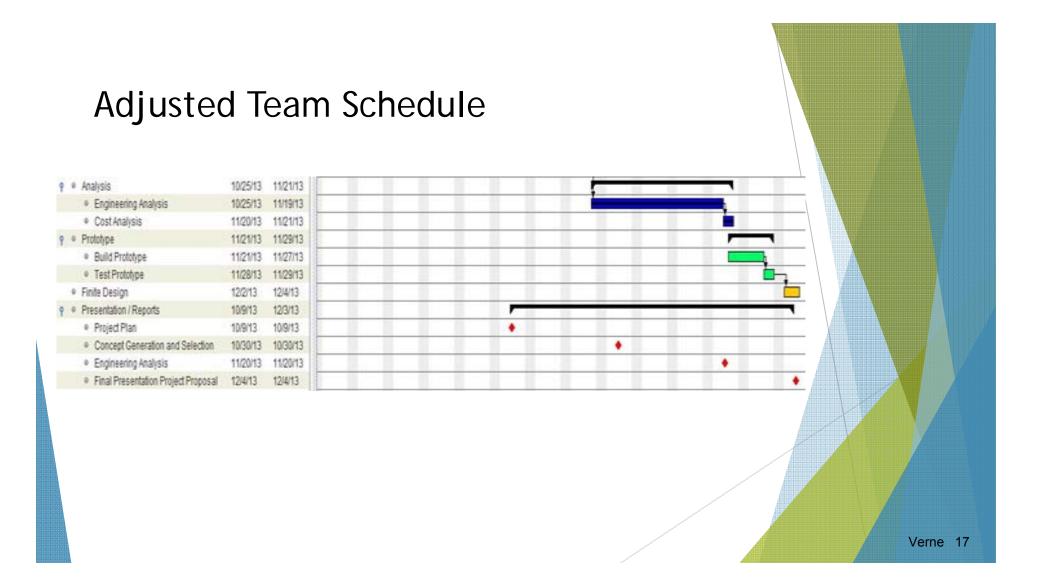

Design 2-Modified TIE Fighter

- Dual axis.
- > Manual North and South rotation.
- Motor and gear East and West rotation.
- Simple and robust

- ▶ Bolts.
- ▶ Frame Welds
- ▶ Cable Tension
- Gears.

Tie Fighter Static Stress Analysis

Stress Analysis Points	Material	Yield Stress (Ksi)	Maximum stress(Ksi)	FOS
North and South bolts	AISI 1010	25.5	4.3	5.9
Welds on the panels box	AISI 1020	50	0.096	106
Cable	Galvanized Aircraft	2.6	.64	4
Gears	polyoxymethylene	2	10	5


Tie Fighter Cost and Parts List

<u>Material</u>	<u>Units</u>	<u>Comment</u>	<u>Cost/unit</u>	<u>Cost</u>
Motor	1	Antennacraft TDP-2	\$62.99	\$62.99
Bearing	4	TB-105 Support	\$35.95	\$143.80
Bolts	8	Home Depot	\$0.16	\$1.28
1/8" Pipe Strap	2	Home Depot	\$2	\$4.00
Gears	2	Amazon	\$7	\$14.00
Winch	1	Amazon	\$20	\$20.00
1" Base Pipe	2	8ft., cut down	\$35	\$70.00
Cable	1	13ft. at \$9/72"	\$0.08	\$0.32
Plates	2	Still shopping		
Tripod	1	Still shopping		
			Total	\$316.39

Competition

- ► Currently, the designs are tailored to New Mexico competition. I.E. max efficiency for the lowest cost.
- ▶ After the requirements for the competition are solidified with the Electrical Engineering team, the designs can be redone to fit the needs of Flagstaff.

Original Team Schedule Updated E * Analysis 10/25/13 11/12/13 # Engineering Analysis 10/25/13 11/4/13 # Cost Analysis 11/5/13 11/7/13 · Program 11/8/13 11/12/13 E * Prototype 11/13/13 11/25/13 Build Prototype 11/13/13 11/21/13 Test Prototype 11/22/13 11/25/13 # Finite Design 11/26/13 11/28/13 B * Presentation / Reports 10/9/13 12/4/13 # Project Plan 10/9/13 10/9/13 Concept Generation and Selection 10/30/13 10/30/13 Engineering Analysis 11/20/13 11/20/13 Final Presentation Project Proposal 12/4/13 12/4/13 Verne 16

Conclusion

Solar Panels - Model KC130TM

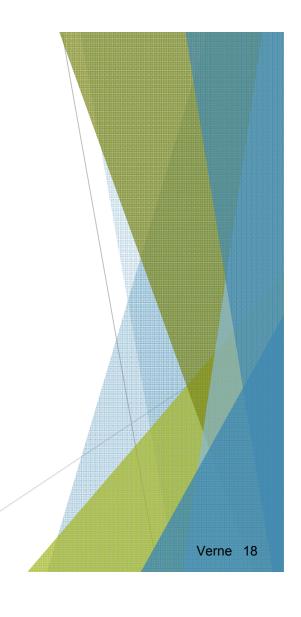
Size: 56.1in x 25.7in x 2.3in

Weight: 28 lbs

Maximum Loadings on the Solar Panel

198lbs from snow 210lbs from wind

Design 1- Rotisserie

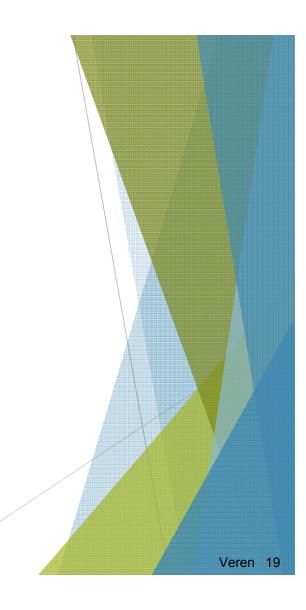

Efficient- \$270 to build and \$0.10 per year to run Smallest factor of safety 2.9 on frame weld

Design 2- Modified TIE Fighter

Unsure if efficiency is worth extra cost

Competition

Deigns focused on the New Mexico Solar Competition EE team working on the actual tracking of the designs


References

- [1] http://www.kyocerasolar.com/assets/001/5186.pdf
- [2] Hibbeler, Engineering Mechanics Dynamics, Thirteenth Edition ed, Upper Saddle River, New Jersey: Pearson Prentice Hall, 9-25-13.

[3]http://www.homedepot.com/p/Unbranded-1-1-4-in-x-48-in-Plain-Steel-Flat-Bar-with-1-8-in-Thick-42180/100337615?cm_mmc=shopping-_-googleads-_-pla-_100337615&skwcid&kwd=&ci_sku=100337615&ci_kw=&ci

_gpa=pla&ci_src=17588969#product_description

[4] http://www.starkelectronic.com/nterotor.pdf

Veren 20

Questions?